		Part A:
1.	Module Type and Title:	Module Type: Core Module Title: Energy Management and Economics
2.	Rationale for this module:	Engineering professionals who intend to build their careers as energy managers need to understand principles related to the management and economics of energy.
3.	Module Description / Overview:	 The main aims of this module are to provide an understanding of: Developing an energy management system Energy pricing Financial evaluation of energy management projects
4.	Pre-requisites/ Co-requisites/ Assumed Skills & Knowledge of candidates:	Candidate must have a relevant degree in engineering or science. Have at least 1 year of relevant engineering experience after obtaining Degree certification Candidates are assumed to • Be able to interpret process diagrams • Have computer literacy
5.	Total Workload hours:	24 hours

6.	Profile of Trainer/s:	The trainer must be a suitably qualified person who fulfils the following criteria:
		 At least a tertiary education (an engineering degree with relevant experience in mechanical or electrical engineering) At least 5 years practical experience in Energy Management

7. Maximum Class Size:	25
8. Learning Outcomes:	On successful completion of this module, the participants will be able to:
	1. Develop an energy management system
	2. Define roles and responsibilities of energy management team members
	3. Set up (or develop) energy policy, energy planning, procedure for evaluating performance of energy systems and energy performance review, documentation and communication processes.
	4. Integrate energy management system into business practice
	 Understand Singapore's energy market tariff structure to enable better evaluation of supply contracts for reducing energy costs
	6. Evaluate financial attractiveness of energy retrofit projects
	7. Understand the various energy performance contracting models
9. Syllabus/module content	Energy Management System (12 hrs)
	 Energy management drivers Introduction to Energy Management System and ISO 50001 Formation of Energy Management (EM) team: Appointing energy manager and other members, Defining responsibilities of team members, Recommended guidelines for energy manager Class exercise on selection of appropriate persons to be members of EM team of an organization Effective tools for appraising energy management performance Setting up of Energy Accounting Centers (EAC) Baseline and bench marking Energy Performance Indicators (EnPI): Normalized indicators, sectoral indicators Class exercise on setting up of Energy Management System Energy policy Energy policy Energy planning Implementation and operation Checking: (a) monitoring, measurement and analysis, (b) non conformities, correction, corrective and preventive action, (c) Internal audit Management review Documentation Communication Class exercise on setting up of Energy Management System of an organization

	 13. Miscellaneous Additional features of ISO 50001 Additional features of AEMAS 14. Singapore Energy Management Policies Energy Policy Energy Efficiency Programme Office Energy Efficiency for Public Sector Energy Management Training Green Mark Master plan Energy Efficiency National Partnership Different Incentives for Energy Management 	nt Projects
	 Energy Supply and Demand in Singapore National Electricity Market of Singapore (NEMS) Main players and their roles and responsibi Contestable and non-contestable consumer Trading of energy, regulation & reserve Types of generating cycles and relative effi Electricity cost structure Generation cost Wholesale Energy Price and Uniform Singaper Energy Price Vesting Contracts Components of utility rates 	s ciency
	 Economic Analysis in Energy Efficiency Investments 1. Financial evaluation of energy management project Simple payback period Return of investment Cash flow analysis Time value of money Discounting rate Present value and net present value Internal rate of return Sensitivity analysis Calculation of life cycle cost Introduction to energy performance contracting Typical energy performance contracting modula guaranteed savings, shared savings, etc 	s odels (such
10. Workload	(i) Lecture/Class:(ii) Class Exercise / Case Study	18 6

			Total 24	hrs
11.	Illus	trative Reading List:		
	(a)	Compulsory reading:		
	(b)	Supplementary reading:	Guide to Energy Management, Barney, L.C., W.C. Turner, W.J. Kennedy, Lilburn, GA : Fairmont Press, 2006.	
			Applied Industrial Energy and Environmental Management, Morv Z., D.D. Gvozdenac, Chichester, West Sussex, U.K., 2008.	ay,
			Practical Guide to Energy Management for Facilities Engineers ar Plant Managers, Mull, T.E., New York : ASME Press, 2001	nd
			ISO 50001	
			Website of Singapore Energy Market Authority http://www.ema.gov.sg/	
			Website of Energy Market Company http://www.emcsg.com/	
			Contemporary Engineering Economics, Park, C.S., Pearson Educa International, Pearson Prentice Hall, 2007	ation
			Engineering Economic Analysis, Newnan, D.G., T.G. Eschenbach Lavelle, Oxford University Press, Inc. 2004	, J.P.

	Part A:	
1.	Module Code and Title:	Energy Measurement and Appraisal
2.	Rationale this module:	Accurate energy measurement and analysis are essential for any energy improvement program. Accurate and continuous measurement of sub-systems energy demand and efficiency has been proven to lead to sustainable and highly efficient buildings. Unfortunately, it is common practice to only measure energy demand (KW) or consumption (KWH) of whole building. Therefore, there is a
		severe lack of skills and knowledge in accurate measurement and analysis of energy demand and efficiency of sub-systems such as chiller plant KW/RT, fans W/CMH or lighting W/m ² .
		Without empowering adequate energy engineers with the skills of accurate and continuous energy, the industry will be mired with disagreements about the claims in energy efficiency.
3.	Module Description / Overview:	This module will equip energy managers with knowledge in accurate measurement and analysis of energy demand and efficiency of common mechanical systems in buildings.
		The energy managers will learn fundamental principles of measurement instruments, their accuracy ranges and calibration.
		They will be taught how to conduct different levels of energy audit on common mechanical systems in buildings. They will learn how to apply the appropriate measuring instruments, collect data and analyze the data and draw useful conclusions.
4.	Pre-requisites/ Co-requisites/ Assumed Skills & Knowledge of	Candidates must have a degree, preferably in mechanical or electrical engineering.
	candidates:	Pre-reading / self-study on the use of MS Excel is mandatory.
		 Candidates are assumed To be familiar in data organization using MS Excel. Have attended the other 3 core modules so are familiar with fundamentals of ACMV, motor driven systems and energy management.
5.	Total Workload hours:	24 hours

 6. Profile of Trainer 7. Maximum Class S 8. Learning Outcom 	 At least a tertiary education (an engineering degree with relevant experience in mechanical or electrical engineering); At least five (5) years of experience in energy audits. Preferably still working as an energy auditor Preferably a KQP or QTP.
9. Syllabus/module	content: 9.1 The need for energy M&A (1 hour) Topics a. The opportunity cost of poor M&A b. What is good energy M&A and how it helps improve energy efficiency. c. Key legislation concerning energy M&A such as BCA Green Mark Intended performance outcomes a. Understand the importance of energy M&A b. Aware of legislation requirements. 9.2 Introduction to different levels of energy M&A (0.5 hour) Topics a. General overview of Level 1, 2 & 3 audits objectives & work scope Intended performance outcomes a. Appreciate the different levels of M&A b. Appreciate the different levels of M&A to do internally and which to outsource.

9.3 Overview of Measurement instruments (3.5 hours)
TopicsPrinciples, accuracy, calibration ofa. KW metersb. Water temperature meterc. Water flow meterd. Water pressure metere. Air temperature meterf. Air flow meterg. Air pressure meterh. Lux meter
 <u>Intended performance outcomes</u> a. Understand the principles of different instruments b. Understand the accuracy ranges c. Understand the calibration methods
9.4 M&A of chiller plant (3.0 hours)
Topics a. L1 to L3 scope of work b. Instruments i. Type, accuracy c. Data to be collected i. Useful metrics ii. Type of data to be collected iii. Duration &freq of data collection d. Data analysis i. Data arrangements ii. Graphical representation iii. Heat balance validation e. Benchmarking i. Codes and standards ii. Best practices f. Case studies i. Common pitfalls Intended performance outcomes a. Acquire L1 & L2 skills in chiller plant M&A. Appreciate the depth of L3 M&A and able to assess the outcome of L3 audits

9.5 M&A of AHUs, FCUs and Mechanical Ventilation System (1
hour)
<u>Topics</u>
a. L1 to L3 scope of work
b. Instruments
i. Type, accuracy
c. Data to be collected
i. Useful metricsii. Type of data to be collected
iii. Duration & freq of data collection
d. Data analysis
i. Data arrangements
ii. Graphical representation
e. Benchmarking
i. Codes and standards
ii. Best practices
f. Case studies i. Success projects
i. Success projects ii. Common pitfalls
Intended performance outcomes
a. Acquire L1 & L2 skills in AHU/FCU M&A.
Appreciate the depth of L3 M&A and able to assess the outcome of L3
audits
9.6 M&A of lighting system (1 hour)
Topics
a. L1 to L3 scope of workb. Instruments
i. Type, accuracy
c. Data to be collected
i. Useful metrics
i. Useful metricsii. Type of data to be collected (Including some IEQ
ii. Type of data to be collected (Including some IEQ related data)
ii. Type of data to be collected (Including some IEQ related data)iii. Duration & freq of data collection
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements Graphical representation
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards Best practices f. Case studies Success projects
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards Best practices f. Case studies
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration & freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards Best practices f. Case studies Success projects Common pitfalls
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration &freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards Best practices f. Case studies Success projects Common pitfalls Intended performance outcomes
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration &freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards Best practices f. Case studies Success projects Common pitfalls Intended performance outcomes Acquire L1 & L2 skills in lighting audit
 ii. Type of data to be collected (Including some IEQ related data) iii. Duration &freq of data collection d. Data analysis Data arrangements Graphical representation e. Benchmarking Codes and standards Best practices f. Case studies Success projects Common pitfalls Intended performance outcomes

9	0.7 Brief discussion on M&A of industrial systems (1.5 hour)
T T	<u>opics</u>
	a. Hot water system b. Steam system
	c. Compressed air system
<u>I</u>	ntended performance outcomes
	 Understand basic information about audit of industrial systems. Detail information will be covered in the elective modules.
9	0.8 Practical session and assignments (6 hours)
	ionico.
	a. Demo of instruments such as flow meter, KW meter,
	temperature meter etc
	b. Walk-through audit of chiller plant / building
	c. Presentation of findings
1 I	ntended performance outcomes
	a. Acquire hands-on experience on identifying saving
	opportunities.
	b. Acquire experience in conducting L1 & L2 audits of chiller
	plant, AHU and lighting. c. Reinforce fundamentals and concepts taught by trainer.
9	9.9 Data plotting and analysis assignments (6 hours)
Т	<u>opics</u>
	Break up into groups and perform data analysis using spreadsheet
S S	oftware
	a. Computation of various parametersb. Prepare templates
	c. Prepare data plots
	d. Analysis of data
<u> </u> <u>I</u>	ntended performance outcomes
	a. Appreciate requirements for data analysis.b. Reinforce fundamentals and concepts taught by trainer.
9	0.10 Briefing on safety (0.5 hour)
	<u>-opics</u>
	a. Basic risk assessment relating to energy audit scope of work.
	b. Legislation on electrical safety
	ntended performance outcomes
	a. Acquire basic safety knowledge relating to energy audit scope
	of work.

10.	Workload	(i) Lecture/Class:	12
		(ii) Practical session & Case study :	12
		Total	24hrs
11.	Illustrative Reading List:		
	(a) Compulsory reading:	Green Mark Guideline on measurement	
	(b) Supplementary reading:	Ashare Guideline 22	
		Ashrae Guideline 14	

1	Module Code and Title	Motor Driven Systems
2	Rationale for module:	In industrial plants and facilities, electric motors and motor driven systems are a part of everyday life. Engineers with job functional responsibilities for energy and facility management need a good understanding of how motor driven systems work. By gaining a good basic understanding of these integrated systems, engineers will be able to appreciate their potential and limitations.
3	Module Description / Overview	This module is a core requirement for applicants of the SCEM – Professional Programme. The objective of the module is to provide participants with basic understanding and knowledge of Motor Driven Systems and applications of these systems.
		 Topics to be discussed include: 1. <u>Concept of Power and Energy</u> a) Calculation of energy savings b) Power factor correction Implementation at component or device level Implementation at system level Economic benefits Technical advantage/disadvantage comparison 2. <u>Motors</u> a) Operation and characteristics of electric motors Conventional DC Motors - shunt, series and compound AC Induction Motors - cage and wound rotor types Conventional synchronous motor PM synchronous motor Brushless DC Motor (BLDC, self synchronous motor) b) Motor efficiency Various losses in motors: copper , iron, core, stray, windage, hysteresis, eddy current losses Motor loading and efficiency High efficiency motors c) Speed control methods Variable applied voltage Variable and trequency Combination of the above d) Selection and sizing of motors (including industry standards)

Approved 4 June 2012 SCEM MC (Updated 25 June 2012)

3. <u>Drive Systems</u>
a) Power Electronic Converter and Inverter Switching Devices
b) Main Components of VSD
c) Types of VSD
Voltage Source Inverter
Current source inverter,PWM
d) Key features of VSD
Rectification
Inverting
Harmonic filtering
Power factor correction
 Voltage level regulation / adjustment
Energy reversal
 Selection, sizing and efficiency of VSD for variable Torque load / constant torque load.
 Application of converters for AC/ DC motor speed/torque control
 g) Application of converters for Permanent Magnet Synchronous (PMSM) speed/torque control
4. Efficient Driven Systems
a) Types of transmission (belts, gears, coupling, chain etc)
b) Comparative features of transmission system
c) Selection, Sizing and Efficiency of transmission system
d) Typical Driven Systems- Pumps, Fans, Compressor, Hoist,
Conveyor, etc
Parallel and series pumping
Losses in pumps, pump efficiency
 Fan losses and fan efficiency Affinity Laws – use affinity law to determine the min % of
 Affinity Laws – use affinity law to determine the min % of reduction in speed for a given % of reduction in quantity of
delivery,
f) Flow of regenerative energy
g) Energy Saving opportunities in applying variable speed to
motors driving centrifugal pumps and fans and application of affinity laws
h) Sizing of motors for variable torque load such as for
centrifugal pumps, Fans and Compressors as well as for
constant torque load.
i) Energy saving opportunities in linear load
Geared/gearless elevator systems and escalatorsCounterbalance
j) Case studies – examples (please refer to Section 9.3.5 for
details using adjustable speed drives on centrifugal pumps
and fans for energy savings under various forms of control and operations).

4	Pre-requisites / Co- requisites / Assumed Skills & Knowledge of candidates:	As per requirements of the SCEM Professional Programme. Pre-reading / self study in the basics of magnetic circuits, electric motors, power electronics and elements of mechanical & electrical engineering is expected of applicants. Candidates are assumed to a) be able to interpret schematic diagrams b) have computer literacy	
5	Total Workload Hours:	24 Hours	
6	Profile of Trainers:	The trainer must have an engineering degree with at least 5 years of relevant experience.	
7	Maximum Class Size:	25	
8	Learning Outcome:	 On successful completion of this module, the participants will be able to: a) Appreciate and better understand the essential parameters and operational characteristics of motors driven systems currently used in industry b) Identify components within driven systems that increase energy consumption and suggest improvements. c) Apply simplified calculation methods to compute energy consumption and potential savings in using such systems. 	

	1 Motors and Saving Potential (6 Hours)
	1. <u>Hotors and Saving Potential (0 Hours)</u>
9 Syllabus / Module content	 Motors and Saving Potential (6 Hours) Motors and Saving Potential (6 Hours) 1.1. Conventional DC machines Separately excited DC Machine Separately excited DC Machine
	1.2 DC Shunt Motor
	1.2.3. Speed-tolque characteristics
	1.3. DC Series Motor
	1.3.1. Speed-armature steady state operating characteristics
	1.3.2. Torque-armature current (Load) characteristics
	1.3.3. Speed-torque characteristics
	1.3.4. Field weakening in series motor
	1.4. DC Compound Motor
	1.4. DC Compound Motor 1.4.1. Characteristics of a DC Compound Motor

1.5. Induc	tion Motor
1.5.1.	Production of rotating magnetic field with 3 phase
	winding and a 3 phase supply
1.5.2.	Excitation Power and VA
1.5.3.	Rotor frequency, rotor emf, rotor current and power
	factor.
1.5.4.	Magnitude of stator, rotor emf rotor current and power factor.
1.5.5.	Torque production and factors determining torque and
150	torque-slip characteristic (small slip)
	Rotor current and torque (small slip)
	Rotor current and torque (large slip)
	Stator current speed characteristic
	Factors determining torque, torque-slip characteristic
1.5.10.	Effect of variation of rotor resistance on torque-slip characteristic
1.5.11.	Conditions for maximum torque and value of
1 5 12	maximum torque
	Stator, rotor losses and efficiency
	Efficiency of Premium Motor vs. standard motor
	Efficiency vs. and factors affecting efficiency
1.5.15.	Determining of load factor
1.6. Synch	ronous Motor
	Unique feature of Synchronous Motor
1.6.2.	Torque Production and control
1.6.3.	Excitation control and power factor
1.7. Power	factor and correction
1.7.1.	Effects of low power factor, means to correct and
	improve the power factor, location of power factors
	correction devices.
1.7.2.	Sizing of KVAr rating of the power factor devices and
	highlighting some negative aspect of additional power
	factor devices to existing power systems, etc
1.0.0	
	and selection of motors
1.8.1.	Motor Selection and Sizing of motors/ drives for
	continuous duty under
	constant torque
102	variable torque loads
1.8.2.	Power range for motors, maximum speed and speed
	range, constant torque & variable torque loads.
	Regenerative operation and braking, class of duty for
	sizing of drives and motors.

2.	Variable Speed Drives (4 Hours)
	2.1. Introduction to basic adjustable frequency drives and their
	characteristics
	2.2. Motor characteristics
	2.3. Types of adjustable frequency drives (VVI, CSI, PWM)
	2.4. VVI power conversion
	2.5. VVI advantages and disadvantages
	2.6. CSI power conversion
	2.7. CSI advantages and disadvantages
	2.8. PWM power conversion
	2.9. PWM advantages and disadvantages
	2.10. Sizing and selection of drive for variable torque and
	constant torque load
3.	Efficient Driven Systems (14 Hours)
	3.1. Pumps (2.5 hours)
	3.1.1. Affinity Laws
	3.1.2. Duty Cycle
	3.1.3. Pumps basic
	3.1.4. Characteristic curve of piping systems
	3.1.5. Pumps and systems curve
	3.1.6. Adjustable speed operation
	3.2. Fans (2.5 hours)
	3.2.1. Performance curve of Fans
	3.2.2. System Curve
	3.2.3. Combined Fans and System curves
	3.2.4. Variable air volume control and energy saving
	3.2.5. Outlet damper control
	3.2.6. Variable inlet guide control
	3.2.7. Adjustable speed control
	3.3. Compressors (2 hours)
	3.3.1. Types of Compressors
	3.3.2. Where is Energy wasted
	3.3.3. Energy Efficient Solution
	3.3.4. Duty Cycle
	3.3.5. Pressure Reduction
	3.3.6. Control System for load matching
	3.4. Lifts and Hoisting (2 hours)
	3.4.1. Types of Liner load - drum, traction, hydraulic
	3.4.2. Various Configuration – Direct & indirect drum,
	counter-balanced
	3.4.3. Braking and Regenerative Energy

		3.5. Motor Driven Systems – Case study (5 Hours)	
		Motor Driven Systems will be studied, analyzed and discussed using simulated examples. Economic aspects will be considered.	
		 The following examples that may be discussed demonstrate the application of adjustable speed drives for motor driven systems as applied to centrifugal pumps and fans to achieve energy saving under various forms of control and operations including the application of affinity laws: a) Constant speed system and adjustable speed control - Variable flow, variable pressure b) Adjustable speed control for parallel pump operation - Variable flow, variable pressure c) Adjustable speed control - Constant flow, variable pressure d) Adjustable speed control - Constant pressure, variable flow e) Adjustable speed control for Fans – Variable volume, variable pressure f) Adjustable speed control for Fans – Constant volume, variable pressure g) Adjustable speed control for Fans – Constant volume, variable pressure 	
10	Workload	Lecture / Class 24 Hours Total 24 Hours	
11	Illustrative Reading List	 a) Variable Speed Drive Fundamentals, Clarence A. Phipps, Fairmont Press (1999) b) Electric machines and power systems - Volume 1 Electric Machines by Syed A. Nasar, McGraw-Hill 1995 c) Power Electronics, Cyril W Lander, McGraw-Hill 1993 	

	Part A:	
1.	Module Code and Title:	Air Conditioning and Mechanical Ventilation (ACMV) systems
2.	Rationale for module:	Learners need the basic knowledge to run the ACMV plant and equipment which operate mostly under part load conditions in contrast to designing for a peak load scenario. Besides meeting the objectives of providing thermal comfort to occupants and other requirements, the learners must have the skills to operate the plant in an energy efficient manner.
3.	Module Description / Overview:	This module aims to integrate knowledge in thermodynamics, heat transfer and fluid mechanics to analyze the operating conditions of the ACMV plant with an objective of energy optimization. The module is designed for the energy manager who has had little influence on the original design of the ACMV system but who has the responsibilities to improve the energy performance of the system.
		Major topics discussed include occupant comfort and health, applications of refrigeration and air conditioning, vapour compression cycle, selection of chillers, pumps, fans, and cooling towers; psychro- metrics of air conditioning processes, energy efficient design and sustainable practices, operations and maintenance
4.	Pre-requisites/ Co-requisites/ Assumed Skills & Knowledge of candidates:	Candidate has an engineering degree or equivalent. Pre-reading / self study / bridging course of the basics of Thermal Environmental Engineering needed if candidate does not have a Mechanical Engineering Background. Candidates are assumed to • Be able to interpret schematic diagrams • Have computer literacy
5.	Total Workload hours:	24 hours

6.	Profile of Trainer/s:	 At least an engineering degree with relevant experience in mechanical or electrical engineering At least five (5) years of experience in design and/or operations of an ACMV plant

7.	Maximum Class Size:	25
8.	Learning Outcomes:	On successful completion of this module, the learner will be able to:
		1. Understand the functions and components of the ACMV system
		 Analyze energy performance characteristics of ACMV systems and be able to analyze the potential energy savings in ACMV systems
		 Operate and maintain energy-efficient chilled water and air distribution systems, resulting in optimum ACMV system performance
		4. Conduct pyschrometric calculations
9.	Syllabus/module content:	 <u>ACMV Systems in Practice (6 hrs)</u> Psychrometrics of air conditioning processes. Occupant comfort and health; sensible and latent cooling load, unitary system, central cooling plant; all-air, all-water and airwater systems.
		<u>b.</u> <u>Air-conditioning plants and equipment (4 hrs)</u> Vapour-compression refrigeration, P-h diagram and coefficient of performance; chillers, cooling towers; ductwork, fans, piping and pumps; cooling and dehumidifying coils.
		 <u>c.</u> <u>Regulatory Framework (2 hrs)</u> Interpretation of relevant international and local codes of practice and standards including ASHRAE 90.1/90.2/189.1/62.1/62.2, SS530, SS553, SS554, ETTV, public & environmental health code and green mark legislation. Implications of codes on energy efficiency with regard to selection of components / equipment - chillers, compressors, pumps, fans, cooling towers.
		<u>d.</u> <u>Designing for Energy Efficiency (5 hrs)</u> Hydronic balancing; reducing losses in ductwork and piping; low flow design; overview of variable speed drives for pumps and fans; cooling tower operations; ventilation, infiltration and exhaust
		<u>e.</u> <u>Sustainable practices (5 hrs)</u> Refrigerant and its impact on energy and environment; energy modeling ; other systems - district cooling plants; heat recovery systems - heat pipes, heat pumps; displacement ventilation, passive systems - chilled beams; desiccant cooling and dehumidification

		<u>f.</u> <u>Operations and maintenance (2 hrs)</u> Ventilation and impact on indoor air quality; operating related mechanical ventilation systems; condenser clea treatment; facilitating accurate measurement and verif (M&V).	ning; water
10.	Workload	(i) Lecture/Class:	20
		(ii) Tutorial & Case study :	4
		Total	24 hrs
11.	Illustrative Reading List:		
	(a) Compulsory reading:	Heating, Ventilating and Air Conditioning, McQuiston, F.C. Parker and J.D. Spitler, John Wiley & Sons, 2000.	, J.D.
	(b) Supplementary reading:	Grondzik, Walter T., "Air Conditioning System Design Man ASHRAE – BH, 2 nd edition 2007	ual″,
		ASHRAE Handbook of Fundamentals, 2009	
		Kreider, J.F., P.S. Curtiss, and A. Rabl, "Heating and Coolin Buildings", McGraw-Hill Inc., 2002	ng of
		"Energy-efficient building systems", McGraw Hill, 2007	

Module:	Lighting Systems & Building Envelope
Description of Contents:	 Lighting System Introduction of the factors that affect lighting system performance Introduction of four (4) major units in lighting: Luminous flux (lumen); Luminous intensity (candela); Illuminance (Lux); Luc (lx) and the concept of perfect diffusing surface Review and comparison of the different types of lamps and fixtures Definition and significant of luminous efficacy
	 Design of energy efficient lighting system Luminance and power density requirements for different room types and usage in accordance to SS531 and SS530 standards respectively Selection and design of lighting system for specific building types Introduction and significance of daylighting in the design of new lighting system' Examples and case studies on different lighting system design
	 Analyzing the possibilities of upgrading and improvement of existing lighting system Analysis of the considerable factors which will reduce the lighting energy consumption Introduction and selection of high efficiency lamps Improvement of energy performance ny introducing lighting controls Operation and maintenance of the lighting system Case studies of light system efficiency improvement
	 Building Envelope Definition and components of building envelope Components of the subsystems that affect the performance of building
	 envelope Introduction to building Envelope Thermal Transfer Value (ETTV) and Roof Thermal Transfer Value (RTTV)¹ Definition and calculation of ETTV Use and significance of ETTV on efficient building design including case studies Walls, roofs, and fenestration energy saving measures Envelope analysis for new and existing buildings

¹ Guidelines on ETTV and RTTV for buildings which are developed by Building and Construction Authority (BCA)

THE SINGAPORE CERTIFIED ENERGY MANAGER (SCEM) TRAINING PROGRAMME AT PROFESSIONAL LEVEL

DETAILS OF ELECTIVE MODULES

Modules:	Integrated Design for Energy Efficiency		
	 1. Objectives: Be able to analyze the potential energy saving in industrial processes Understand and recognize industrial plants and systems energy performance characteristics, resource conservation and waste regeneration 		
	 2. Scope: The integrated design process Components of whole building design - The integrated design approach and integrated team process Planning and Conducting Integrated Design (ID) Charrettes Holistic Life Cycle Analysis for component and system Embodied Energy Case studies 		

THE SINGAPORE CERTIFIED ENERGY MANAGER (SCEM) TRAINING PROGRAMME AT PROFESSIONAL LEVEL

DETAILS OF ELECTIVE MODULES

Modules:	Steam and Compressed Air Systems		
	1. Objectives:	 Be able to analyze the potential energy saving in industrial processes Understand and recognize industrial plants and systems energy performance characteristics, resource conservation and waste regeneration 	
	2. Scope: •	 Steam technologies and application General introduction and application of steam Utilization and development of steam turbine & steam engine Technologies of boilers Calculation of steam turbine & steam engine's efficiencies Steam management and pinch technology 	
	•	Compressed air system technologies - General introduction and application of compressed air systems - The components of compressed air system - Optimization of the compressed air system	
	•	 Waste Heat Recovery Classification of waste heat recovery systems Advantages and application Commercially viable waste heat recovery equipment Saving potential 	
	•	Safety consideration in Steam and compressed air systems	
	3. Course Accreditation:	This course has been previously accredited 24 PDU under the Professional Engineers Board's Continuing Professional Development Programme for Engineers in Singapore. Course participants must complete this course with at least 75% attendance rate.	
		Lal Jayamaha and Dr. Md Raisul Islam ase refer to page 9 for more information on trainers)	

THE SINGAPORE CERTIFIED ENERGY MANAGER (SCEM) TRAINING PROGRAMME AT PROFESSIONAL LEVEL

DETAILS OF ELECTIVE MODULES

Modules:	Combined Heat and Power (CHP) Systems			
	 Objectives: Be able to analyze the potential energy saving in industrial processes Understand and recognize industrial plants and systems energy performance characteristics, resource conservation and waste regeneration 			
	 2. Scope: Introduction of district cooling, thermal storage and industrial plants with c and power system Feeding systems Cooling systems Power generation system Exhausting system Benefits of CHP Determine the Economics of a CHP Permitting, Installing, Operating, & Maintaining A Cogeneration System Calculation on energy efficiency of a CHP Definition of the possibilities of reducing the energy losses inside a CHP Optimization of the CHP output energy 			
	3. Course Accreditation:	This course has been previously accredited 24 PDU under the Professional Engineers Board's Continuing Professional Development Programme for Engineers in Singapore. Course participants must complete this course with at least 75% attendance rate.		
		. Lal Jayamaha, Dr. Md Raisul Islam and Mr. Gerald Ng lease refer to page 9 for more information on trainers)		

Singapore Certified Energy Manager <u>Programme</u> <u>Professional Level</u>

Part A:					
1. Module Code and Title:	Energy Recovery and Reuse				
2. Rationale for introducing this module:	Pinch analysis for synthesizing and retrofitting heat exchanger networks was developed over the past three decades, and it has found many industrial applications for improving energy recovery and reuse. Its approach has also been extended to other applications such as wastewater minimization and hydrogen networks. Hence, engineers, particularly those dealing with heat exchange and heat transfer equipment such as furnaces, heat exchangers and coolers, should know pinch analysis concepts and applications for energy efficiency. The proposed module covers pinch analysis and other energy recovery techniques. Engineers from petroleum refining, petrochemicals, industrial chemicals and gases, pharmaceuticals, thermal power plants, incineration plants, process design and control, and other related industries, will benefit from this module.				
3. Module Description / Overview:	This module covers pinch analysis for designing heat exchanger networks, which has found many applications and has potential for improving energy efficiency of many processes including waste heat recovery processes. Other energy recovery techniques and opportunities are also discussed. Major topics in the module include pinch analysis concepts, data required and extraction, finding targets, heat exchanger network design, utilities, heat and power systems, and other energy recovery techniques. These will be discussed with illustrative examples in the lecture sessions, and candidates will solve selected examples in the practice sessions. Industrial applications will be outlined, and potential of energy recovery and reuse for improving energy efficiency in local industries will be discussed. This module is proposed as a technical elective in the SCEM programme.				
4. Pre-requisites/ Co- requisites/ Assumed Skills & Knowledge of candidates:	Candidate should have a degree, preferably in chemical, process or mechanical engineering, or equivalent qualifications. Pre-reading/self study of heat transfer concepts and equipment in process industries is needed. Candidates are assumed to be familiar with heat transfer equipment in process industries and heat exchanger calculations, and also to be computer literate (i.e., using Word, Excel etc.)				

5. Total Workload hours:	24 hours (8 hours on each of the 3 days)
6. Profile of Trainer/s:	The trainer must be a suitably qualified person who fulfils the following criteria:
	 A chemical/mechanical/process engineering degree or higher
	• At least five (5) years of relevant knowledge / training / experience in pinch analysis and its applications for energy efficiency
7. Maximum Class Size:	25
8. Learning Outcomes:	On successful completion of this module, the candidate will be able to:
	1. Describe pinch analysis and its methodologies, benefits and applications
	2. Apply pinch analysis methods to find targets for heat exchanger networks
	3. Apply pinch analysis methodology to design and evolve heat exchanger networks
	4. Discuss other energy recovery techniques for chemical and process industries
	 Analyze and improve energy efficiency of chemical, thermal and related processes
9. Syllabus/module	Introduction/Overview (1 hour)
content:	Energy Reuse and Efficiency; Heat Exchanger Networks; Pinch Analysis; Industrial Experience; Contents and Learning Outcomes
	Heat Exchangers (1 hour) Types, Basic Principles; Design Equations
	Pinch Analysis Concepts (4 hours for lectures + 2 hours
	for a practice session)
	Main steps; Temperature-Enthalpy Diagram; Composite Curves, Problem Table, Pinch and its Significance; Grand Composite Curves; Choice of Minimum Driving Force; Heat Exchanger Network – Grid Representation and Design for Maximum Energy Recovery; Examples
	• <u>Targeting</u> (3 hours for lectures + 1 hour for a practice session)
	Utilities; Threshold Problems; Area and Number of Units; Optimal $(\Delta T)_{min}$; Examples
	 <u>Heat Exchanger Network Design</u> (3 hours for lectures + 2 hours for a practice session)

		İ			
		 Stream Splitting and Cyclic Matching; Network Relaxation; Threshold Problems; Examples Other Energy Recovery Techniques (4 hours) Waste Heat Recovery using Absorption Chillers; Recompression and Reuse of Vapor Streams; Pow Recovery from High Pressure Streams; Use of Hig Efficiency Pumps, Compressors and Drivers; Proc Modifications for Energy Efficiency Industrial Applications (2 hours) Case Studies (from Chemical Processes and/or W Heat Recovery Applications) Discussion and Conclusion (1 hour) Discussion on energy recovery and reuse techniq their application including an integrated approach improving energy efficiency of processes <i>Illustrative examples will be used throughout the lead In addition, other examples will be used in the practices sessions.</i> 	gh ess aste ues, n for c <i>tures.</i>		
10.	Workload	(i) Lecture/Class:	19		
		(ii) Tutorial/Practice/Review:	5		
		(iii) Fieldwork/industrial visit/other activity (Describe):	0		
		Total	24 hrs		
11.	Illustrative Reading List:				
	(a) Compulsory reading:	Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy, I.C. Kemp, Second Edition, Butterworth-Heinemann, Oxford, 2007.			
	(b) Supplementary reading:	Chemical Process Design and Integration, R. Smith, John Wiley, England, 2005. Heat Exchanger Network Synthesis: Optimization Process by Energy and Resource Analysis, U.V. Shenoy, Gulf Publishing (1995).			